Корреляционное исследование

01 октября 2022 г. в 21:34

Корреляционный анализ — метод обработки статистических данных, заключающийся в изучении коэффициентов (корреляции) между переменными. При этом сравниваются коэффициенты корреляции между одной парой или множеством пар признаков, для установления между ними статистических взаимосвязей.

Общая информация

Цель корреляционного анализа - обеспечить получение некоторой информации об одной переменной с помощью другой переменной. В случаях когда возможно достижение цели, говорят, что переменные коррелируют. В самом общем виде принятие гипотезы о наличии корреляции означает что изменение значения переменной А, произойдет одновременно с пропорциональным изменением значения Б: если обе переменные растут то корреляция положительная, если одна переменная растёт, а вторая уменьшается корреляция отрицательная.

Ограничения

1. Применение возможно в случае наличия достаточного количества случаев для изучения: для конкретного вида коэффициента корреляции составляет от 25 до 100 пар наблюдений.

2. Второе ограничение вытекает из гипотезы корреляционного анализа (см. выше), в которую заложена линейная зависимость переменных. Во многих случаях, когда достоверно известно, что зависимость существует корреляционный анализ может не дать результатов просто ввиду того, что зависимость не линейна (выражена, например в виде параболы).

3. Сам по себе факт корреляционной зависимости не даёт основания утверждать, какая из переменных предшествует или является причиной изменений, или что переменные вообще причинно связаны между собой, например ввиду действия третьего фактора. (см. Ложная корреляция, ниже).

Область применения

Данный метод обработки статистических данных весьма популярен в социальных науках (в частности в психологии), хотя сфера применения коэффициентов корреляции обширна: контроль качества промышленной продукции, металловедение, агрохимия и проч.

Популярность метода обусловлена двумя моментами: коэффициенты корреляции относительно просты в подсчете, их применение не требует специальной математической подготовки. В сочетании с простотой интерпретации, простота применения коэффициента привела к его широкому распространению в сфере анализа статистических данных.

Ложная корреляция

Часто, заманчивая простота корреляционного исследования подталкивает исследователя делать ложные интуитивные выводы о наличии причинно-следственной связи между парами признаков, в то время как коэффициенты корреляции устанавливают лишь статистические взаимосвязи.

Иллюстрацией этому служит хорошо известный анекдот: если выйти на улицу и измерить у 1000 случайных прохожих размер обуви и IQ, между ними будет обнаружена статистически значимая корреляция. Однако это не значит, что размер ноги влияет на интеллект, так как на наличие этой взаимосвязи скорее всего повлияли такие факторы, как пол и возраст участников исследования.

В современной количественной методологии социальных наук, фактически произошел отказ от попыток установить причинно-следственные связи между наблюдаемыми переменными эмпирическими методами. Поэтому когда исследователи в социальных науках говорят об установлении взаимосвязей между изучаемыми переменными, подразумевают либо общетеоретическое допущение, либо статистическую зависимость.

  • Методология
  • Наука

Комментарии (0):

Материалы по теме:

01 окт. 2022 г.
Корреляция
01 окт. 2022 г.
Корреляция или причинно-следственная связь
Современные корреляционные методики могут наводить на мысль о причинно-следственных связях. Отсроченные корреляции (time-lagged correlations) выявляют последовательность событий (по ним, например, отмечают, когда изменение достижений проявляется чаще — до изменения самоуважения или после него). Исследователи могут также использовать статистические методики, исключающие влияние «мешающих» переменных.